6,376 research outputs found

    Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution.

    Get PDF
    Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    Detection of Conjugated Soy Metabolites in Urinary and Tissue Samples after Methanol Extraction

    Get PDF
    [[abstract]]Glucuronide conjugates of soy isoflavone metabolites genistein, daidzein, glycitein and equol in urinary samples from women, female pigs and female rats were pretreated with methanol instead of solid phase extraction or liquid-liquid extraction after enzymatic digestion. The samples were analyzed using an LC-ESI-MS/MS ion trap system. Analysis of rat liver sample using this procedure was also attempted. By comparison the elution sequences with results from previous studies, glucuronide conjugates including 7-gluc-Dai, 7-gluc-Gly, 4'-gluc-Dai, 7-gluc-Gen, then 4'-gluc-Gen were identified sequentially in women urine. However, 5-glue-Gen was also observed in female porcine urine. In rat urine, sul-Dai was observed after 7-gluc-Dai, while 7-gluc-Equ and 4'-gluc-Equ were observed after 7-gluc-Gen. The metabolite profiles in rat liver tissue samples were found with 7-gluc-Dai and 7-gluc-Gen. However, glucuronide conjugates of equol and sulfate conjugate of daidzein were only found in rat urine. Interestingly, quantification studies performed by LC-APCI/MS and LC-ECD showed that the aglycone and conjugated glycitein were both found in porcine and rat urine, but only conjugated glycitein was found in woman urine

    POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts.

    Get PDF
    PURPOSE: A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. THEORY: Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. METHODS: The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. RESULTS: Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. CONCLUSION: POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    ITPKC Single Nucleotide Polymorphism Associated with the Kawasaki Disease in a Taiwanese Population

    Get PDF
    Kawasaki disease (KD) is characterized by systemic vasculitis with unknown etiology. Previous studies from Japan indicated that a gene polymorphism of ITPKC (rs28493229) is responsible for susceptibility to KD. We collected DNA samples from 1,531 Taiwanese subjects (341 KD patients and 1,190 controls) for genotyping ITPKC. In this study, no significant association was noted for the ITPKC polymorphism (rs28493229) between the controls and KD patients, although the CC genotype was overrepresented. We further combined our data with previously published case/control KD studies in the Taiwanese population and performed a meta-analysis. A significant association between rs28493229 and KD was found (Odds Ratio:1.36, 95% Confidence Interval 1.12–1.66). Importantly, a significant association was obtained between rs28493229 and KD patients with aneurysm formation (P = 0.001, under the recessive model). Taken together, our results indicated that C-allele of ITPKC SNP rs28493229 is associated with the susceptibility and aneurysm formation in KD patients in a Taiwanese population
    corecore